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Summary 

We present a method to determine the displacement and the stress on 

the crack plane for a three-dimensionlj.l shear crack of arbitrary shape 

propagating in an infinite, homogeneous medium which is linearly elastic everywhere 

off the crack plane. The mair. idea of the method (which is due to Ramano) is to 

use a representation theorem in ~hich the displacement at any given point 

on the crack plane is written as an integral of the traction over the 

whole crack pl.ane. The tractions are weighted by the three-dimensional 

solution to Lamb I s prob~.em. Such solutions usually require one numericlll 

integration, but fortunately the necessary solutio'as are ob::ainable in 

closed form. The weighting factor is discretized over a space and time 

grid to solve the integral equation numerically. As a test of the accu-

racy of our numerical technique, we compare the results with known solu-

tions for two simple cases. 
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.!!!!.roduction 

It is now taken as a general working hypothesis that earthquakes 

(certainly shallow earthquakes) are produced by a sudden decrease of 

shear traction due to an instability which initiates at a 

point. on some fault surface within the Earth. The rupture spreads over 

the fault surface and shearing motions develop further, behind the rup­

ture front. The rupture stops at some later time either due to a 

strong barrier which it runs into or simply due to lack of strain energy, 

and the motion throughout the source region eventually ceases. Details in 

this broad picture need to be filled in, particularly with regard to the effects 

of spatially heterogeneous fault strength and initial stress. However, 

practical computations of displacements and stresses within faulting 

models of this type havi.ng any fault shape have not. yet been done even for 

a planar fault surface lying in an unbounded, isotropic elastic medium. 

For certain special geometries of ,~aulting, a great deal is known. 

The most widely studied involve rupture fronts which initiate and 

move as an infinite line. [From an enormous literature, one may cite the 

key papers of Kostrov (1966), Burridge (1969), Freund (1976), AndreWS (1976) 

and D,as & Aki (1977a, b).J From these two-dimensional studies, a quantita­

tive picture has begun to emerge of-how the distrilSutiori of fault 

strength will affect rupture propagation. Important though this is, 

such models are inherently limited in their ability to explain gross features 

of faulting because many aspects of the earthquake source demand a three-
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dimensional analysis. For instance, motions at an earthquake source initiate 

in a highly localized region (a point, rather than along an infinite line), 

and plane strain and antiplane Gtrain are present simultaneously (possibly 

being coupled together) around the general rupture front. The Rpecial geo­

metry of elliptical (including cir.cular) cracks has been assumed by many 

authors to model earthquake faults (e.g., Kostrov 1964; Burridge & Willis 

1969; Rich,.rds 1976; Madariaga 1976). Here again, this special assumption 

has led to some progress, both for near-field studies, and for the study of 

stopping phases. The major limitation of published methods is that the 

areal growth of faulting has had to be specified, rather than itself becom­

ing a part of the solution for spontaneous crack growth. Thus, even for 

a crack wh7._n starts out with an elliptical shape, there has been no inves­

tigation to see if this shape will be maintained coherently duri)lg crack 

gr.owth. Mikumo & Miyatake (1978) have suggested that major irregularities 

in slip can develop during dynamic faulting. They use a finite difference 

method for solving for the elastic motions, and their results are qualita­

tively ap¥'eaHng. However, it should be pointed out that due to inadequate 
-----

computer storage, these authors had to place a rigid spatial boundary parallel 

to the fault surface, at only one grid spacing from the fault. Reflections 

from such a surface clearly modify the computed fault slip and pre-

vent an accurate account of the effects of radiation of elastic waves away 

from the source region. 
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In this paper, we present a num&rical method which is an e~tension of 

Hamano's (1974) numerical method for two-dimensional problems [described 

in detail by Das & Aid (1977a) 1. The method is capable of handling three-

dimensional spontaneous ruptu.e propagation with variable fault strength and 

variable stress drop. In this paper, we shall not study these general prob·', 

lems but only present the details of the method and show that the method 

works by comparison with available analytical and numerical solutions for 

two very simple cases. The a~plication of the method to actual faulting 

processes will be discussed in a future paper. 

Table of svmbols (in alphabetical order) 

F = discretized values of g at the origin 

= three-dimensional Green I s f1.lnction for a homogeneous half-space. 

= response of three-dimensional homogeneous, half-space for 

a unit step source time function 

r,~ = polar coordinates on crack plane x3 = 0. 

= crack region 011 crack plane x3 = 0 

= region outside crack on plane of crack 

t,s = time 

. ~t = grid-spacing in time 
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= o.t/r 

Q displacement component in xi-direction 

= cartesian coordinates 

= grid spacing in xl and x2 directj.ons. 

= compressional wave speed 

= shea~-wave speed 

y ~ Rayleigh wave speed 

= dynamic frictional stress. 

= stress components acting on crack plane x3 = 0 

= effective stress or "dynamic stress drop". 

Formulation of oroblem 

We model the earthquake source as a propagating plane shear crack in an infinite 

homogeneous, elastic solid, radiating energy out into three spatial dimensions. The 

geometry of the crack is shown in Fig. 1. Let x3 = 0 be the plane across which slip 

occurs. Initially, the infinite body is under a uniform state of stress aij • 

The stress on the fault plane x3 = 0 can be separated inco the normal stress 

a33' and a shear stress alo· = aO, say. The component a23 • can be taken 

to be zero by taking the axis Xl in the direction of maximum initial shear. 

Let us aSSume that the initial shear stress is increased so that the 

crack extends along the plane x3 = O. The normal stress a33° over the plane 

x3 = 0 remains constant throughout the rupture process (Richards 1976). 

Let us take the origin of time t = 0 as the time when the crack starts 

extending. The extension of the crack may be rapid enough to generate elastic 
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wav~s. 'rhe tip of the crack may move at some predetermined velocity or 

the position of the crack tip as a function of time may be found using 

the state of stress near the crack tip and an appropriate fra~ture cri-

terion. In this paper we shall only consider the former case. As the 

crack extends, there is relative motion between the regions Xo < 0 and 

x3 > 0 and a displacement discontinuity occurs across the x3 = 0 plane. 

This discontinuity in displacement is a function only of the coordinate xl' 

x2' and time t. The shear stress on the crack surface is zero if there is 

complete stress release or is equal to the dynamic frictio\,al stress O'd 

given by ~d0'33· on the crack surface. lld is the dynamic coefficient or 

friction (which can be taken as a constant or II funct:!.on of space and time) • 

.... 
Let the incremental stresses due to the displacement,s u fl'om initial ,con-

fl.guration be t ij , so that O'l,j = O't; + t ij i.e., 'ij is the stress change 

due to the motion. We shall solve the problem for 'ij' (An initially 

nonhomogeneous state of stress can be incorporated into the method.) 

We shall assume that the initial conditions are that the displacements 

and velocities are zero everywhere in the medium. We discuss next the 

symmetry of the displacements and stresses across the plane x3 ~ O. 

Das (1976) showed that the quantities '23' '13 and u
3 

are even across 

the plane x3 = 0 and 'aa' ul and Uz are odd across the plane x3 = 0, by 

considering the equations of motion satisfied by the u. 's and the fact that 
1. 

'13' '2a' 'aa' and ua are continuous across the crack plane xa = 0 and 

u l and u2 are continuous across the portion of xa = 0 outside the crack 
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but discontinuous ac~oss the po~tion of x3 = 0 containing the c~ack. 

Fo~ the c~acked.region of the plane Xg = 0, we can therefore ~ite 

u l (xI ' lt2, +0, t) = -u l (lt l ' lt2' -0, t) = (1/2)AU
I 

and liZ (xI ' :t2 , +0, t) = -uz (xI' ltz' -0, t) = (1/2)AUz 

whe~e AUt and 6uz are, ~espectively, the relative displacements in the XI 

and :-:2 directions ac~oss the x3 = 0 plane. FOr the ullbrok,~n region of 

x3 = 0, ut " 0, Uz = O. Thus there is a symmetry in the problem about 

the plane x3 = O. OWing to this symmetry, it will be sufficient to 

solve the problem in a half-space bounded by the plane containing the 

crack, i.e., the x3 = 0 plane. 

Let us divide the c~ack plane x3 " 0 into the c~ack region SI and 

the region outside the c~ack Sz. (The no~al stress '33 ac~oss the 

fault is zero everywhe~e on x3 " 0 since '33 is odd and continuous 

across x3 = 0.) In SI' we therefore have: 

'13' 'Z3 are known.; '33 = 0; ul , uZ' u3 unknown. 

In 52' '13' '23 are unknown; '33 = 0; u l " 0, u2 = 0 and u3 f 0 is unknown. 

Using the relation 0ij = 0ijo + 'ij' the boundary conditions finally are: 

In 51: 'Z3 = 0, -'13 =-, e = (0 d-oO ) where 'e is called the "dynamic stress 

= 0 drop" or the "effective stress". 

ul , uz, lI3 are unknown. 

In S2: ul " 0, u2 = 0, '33 = 0, u3 f 0 (unknown) 

, 
13 ' '22 unknown. 

This gives a mixed boundary va.lue problem fot" a ver;y general three-dimen-

sional ruptu~e propagation problem including mixed-mode ruptu~e6. 

(1) 
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The integral equation for the three componentR of displacement can, 

in general, be written as [pg. 29 of Uae (1976), also Aki & Richacds 

(1980) eq. 2.43] 

co 
u (x,t) = I dll n ~ 

free where the Green function Gni (:,t;~,s) is the displacement in the n-direction 

at the point (xl ,xl ,0) at time t at: the fl'ee sudace due to a unit impulse acting 

in the i-direct:ion at (Yl'Y2'0) at time s at the free surface, and 5' is the 

bounding surface of the elastic half-space (Le., the infinite plane \'ontailling 

the crack). Since x3 " 0, 1; = 0 in our 

via (Yl-xl ), (Yl-x~), 0,0 and (t-s), and 

t-s). On the fault plane x3 = 0 we get 

case, the dependence on y,x,s,t is only 

, free 
so &ni (:,t;~,s) = gni(Yl-X l 'Y2-x2'O,O, 

.. co 
u l (x l ,x2,O,t) = I ds II [gIl (Yl-Xl'YZ-x2,Q,0,t-S)f13(Yl'Y2'0,s) 

_0:0 -OJ 

+ glZ(Yl-xl,yz-xz,0,0,t-S)TZ3(YI'YZ'0,s) 

+ g13 (Y l-Xl'Y 2-XZ'0,0, t-s)T 3~ (Y I'Y 2'0,s) ]dy lliy 2 

" I'" ds 11 [g2: (Y I-Xl'Y Z-xZ ,0,0, t-s); 13 (Y I'Y ~' a,s) 
_0) -co 

+ gZ2(YI-Xl'Y2-XZ,0,0,t-S)TZ3(Yl'Ya'0,s) (2) 

+ ga3 (Y l-Xl'Y a -xa'O ,0, t-'S)T 33 (Yl ,Y l'O ,s) ]dYl dY2 

u3(Xl,x2,0,t) = I~ ds If [g31(Yl-xl'Y2-xZ,0,0,t-S)TI3(Yl'YZ'0,s) 
_co _00 • 

+ g32 (Y l-xl,y z-Xz ,0,0,t-s)T23 (Yl'Y Z'O,s) 

+ g33 (y I-Xl'Y z-X2 ,0,0, t-sh 33"(Y j'Y z,O ,s) ]dy ldy z 

[The terms g13' gZ3 and. g33 are included to study tension cracks.] 

The region of integration for the system of integral equations is 

defined by the causality condition. Taking the P-wave velocity ~ " 1, 

the equation for the region over which Green's function is non-zero is 

,I , 
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(t-s) .- /(y -x ) 2 + (y -x ) 2 + Y 2 _> 0, 11 Z'2 3 t ~ s ~ O. 

For x3 = 0, this reduces to the cone S '.Fig. 2) defined by 

(3) 

Thus the integrations in the integral equations extend over this conical 

region only. To find the displacements inside the crack. it is necessary 

to solve the system of three integral equations under the initial and 

boundary conditions discussed above. (It is not necessary to determi.ne 

the displacement compon=nt u3, which gives the displacement normal to 

the crack plane, as long as we are interested in looking only at the slip 

on the fault plane.) The region of integration includes the region S 2 

outside the crack (but within the backward characteristic cones) where 

the stress components 'iz and '21 are unknown. So w~ must first determine 

these stresses. This can be done as long uS the crack-tip velocity is 

known - either assumed ~ E!!£!! or determined by use of some fracture 

criterion, as we shall show in a later section. 

4. Green's function for the three-dimensional problem 

To solve for u
1 

and U z in the system of equations (2), we need 

Gre~In's functions gil' g12 (= gZI) and g22' where, for e:tample, by g12 

we mean that 
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is the displacement in the x1-direccion, at position (x
1
,x

2
,O) and time t, 

due to a unit impulse applied in the x
2
-direetion a~ the Qrigin at time s. 

Richards (1970) has analytically solved Lamb's problem an, obtained closed 

~;rm solutions for the case when the applied force is a unit step ill time 

rather than an impulse. Let us call these Green's functions H H 
gil ' 8 12 

H and ~22' Then we simply need to find the time-derivative of these quan-

tities co ootain the Green's functions we require for our problem, so 

d H 
that 811 .. Cit gil' etc. 

The four Green's functions are given in terms of two dimensionless 

where, 

Xl • r cos to Xz = r sin •• T = ae/r. 

and 

a for T " 1. 

T2(c ICT2-T 2)1~ I(T2-T 2)~-c I(T 2_T2)~} for 1 < T < (ale), 
1 I 2 2 3 3 

J., 
0.5-2T2c / (T 3 2_T2) 2 for (ale) < T < T3 :: (aIeR) 0 

0.5 for T3 < T. 

(4 ) 

(5) 

(6a) 
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o for T < 1, 

-c +c (T2~T 2)~+c (T2_T 2)~+C3(T 2_T2)li for 1 < T < (a/S), 
4 1 12- 2 3 

-2c +2c (T 2_T2)~ for (a/S) < T < T
3

, 433 

-2c4 for T3 < T. 

The cons tantll T I?' T:/, T / are solutJ.ons to the Rayleigh cubic equation, 

and in fact T3 a a/cR where cR is the Rayleigh wave speed. c I ' c2, c3 and 

(6b) 

c4 are positive constants, for a homogeneous elastic medium of given Poisson's 

ratio less than 0.263. The seven constants TIZ, ... , c" need be evaluated jus~ once 

for a given elastic medium, and then the computation of our Green's functions 

reduce to taking at most three square roots, and performing on the order 

of ten multiplications and divisions. 

Fig. 3 shows the quantities II and 12 as found by Richards (1979) 

for the case a = 13S, and the ti~~-derivatives of II and 12 , 

for the same case. Note the singularities in II and 12 and in 

arl/at and :Iz/at. Note also ,',hat for the three-dimensional Green'l; func­

tion with an impulsive source, the displacements become zero once the 

Rayleigh wave has passed. This results 1n a dras tic reduction in the computer 

storage necessary to store the g' 5, unlike the two-dimensl..,nal problem 

where the disturbance never ceases. Note e.lso that gil and g are simply 
Z2 

90· rotations of one another so we only have to determine gil and gil' Also gil 

itself is symmetric about the XI and x2 axes so we only have to calculate 

it in one quadrant. g12 has an eight-fold symmetry and needs to be cal­

culated only in half of one quadrant. 
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5. Numerical method of Bolving the system of integral equations 

The integral equations (2) are of the general form 

+ ... + , .. 

In order to solve (7) numerically, we ~1vide the (~I'~2,t) volume into 

elements, each having length ll~ along the ~l and x2 direction 

and lit along the t-direction. The grid points are tho centres 

of these e1er,,",., .. · and are given by Xl = l,ll:t, ~2 = tnA~, t = nllt, where 

i,m = O,:!:l,:t2, • " I n = 0,1 , 2, ... The stresses are assumed 

to be constant within ea~h element. The kernel g has to be dis-

cretized so that the integrals in (7) can be replaced by summation 

over grids. We discretize g by averaging g over each volume element. 

Then the discretized g is 

1 
llxllxllt 

t k+llt/2 
I dt 

tk-llt / 2 

X a +llx/2 
I dXl 

xli-u~/2 

where xli2+-h2j2~ a2t l
k, a = P-wave velocity 

X2j+u~/2 

I g(:t l ,X2,O,O,t)dx2 
XZj -llx/2 

I~terchanging orders of integration (which is allowable as long as the limits 

of the integration over Xl and ~2 are no t functions of time), we get 
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1 .. 
llxt.xt. t 

xa+Ax/ 2 
r dXI 

xii-Ax/ 2 

X2j+Ax/2 
r dX2 

Xl j-Ax/2 

12 

Transforming to r ,4> coordinates (by equation (5», we find that we are 

able to do the integration ever r analytically. The integration over ~ 

has to be done numerically. Due to the symmetries (or antisymmetries) in 

the gls as discussed before, we only have to do the numerical integration 

over one quadrant for the gIl's and over half Qf one quadrant for the gI2's. 

For the points lying along the t-axis (including the origin of the (xl,xz,t) 

coordinate system, we were able to do the integrations over both rand 

.j> analytically. Note that the l/r type singularity in the Green func~ 

tions (equation (4» does not cause any problem even at r = 0 since l/r 

can be integrated over an area about the origin to give a finite value 

(c.f., Andrews 1974). 

Discretizing the integral equation (7), we obtain the matrix equation 

E1 [F (x Ii -xU' x2j -x2m' 0 ,0, tk-tn" (xl.!, ,x2m 'O, t n) 
,m,n 

+ ... + ... J 

where (xa ,x2j ,O,tk) refers to the ob.servation point. It should be pOinted 

out that in eqtHition (8) one can use variable values of Ax and t.t in the 

region of integration. In other words, the cone of integration S can be 

divided into finer grids at some places than others, e.g., if one is in-

teres ted in studying more closely the behaviour at the crack-tip, one can 

divide the region near the crack-tip into finer grids than regions farthe'r 

~way from the crack tip. This is useful in determining, say, the amount 

(8) 
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of energy absorbed at the crack-tip during the rupture process, In this 

respect, the integral equation technique is analogous to finite-element 

methods which allow variable grid-sizes, However, implementation of this 

variable grid-size is not a trivial problem and for now we shall consider 

only constant grid-sizes, 

Figure 4 shows a plot of the discretized gll at a c':r.tain ins tant in 

time, Note that as expected, there is no P-wave along the x\-axis, 

To determine the stresses 'IS and '1S in S2' we make use of the boundary 

conditions that u1 = a and u2 = a in S2' Then, from the integral equations, 

we get 

The region of integration is the same backward characteristic cone S 

defined in (3), Writing the two above equations in the discrete form 

and taking the term for which Xl = YI' x = y and s = t to the L.H.S., 
2 2 

we get 

F I2'2S(X I ,X2,O,t) + F ll 'IS(x l ,x2,O,t) 

= - EEE [gI2(")'2S( .. )+gll("·)'IS("·)] 

Sum over 

= L, s.ay 



.. - EEl: [gZ2(")'2.;( •• )+g21( •• )T13("')] 
sum over 

= M, say 

14 

where F ij are the known values of the Green function gij averaged over the grid 

centered at the odgin of the coordinate s:istem. l'he summation exteild~ over 

every point of the cone S except the vertex. Due t" the symmetries tn the Gre.en 

functions, it follows that: 

Fij = 0, if if j 

fO,ifi=j. 

Also, F II = F 22' Hence, the unknown s tresses are de termincd as 

'13(X1, x2' 0, t) 
L 

= 
F II 

and '23(x1, 0, t) M 
x2' = 

FlI 
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6. Instantaneous circular shear crack 

We study the case of an instantaneous circular fault of finite radius 

that suddenly appears and starts radiating without growing. lhis is a 

non-physical problem as it violates causality. We study it simply to 

check the accuracy of our numer:f.ca1 technique by comparing it with the 

results of Madariag~ (1976) who studied the same problem using a com-

p1ete1y different numerical technique viz. a finite difference technique. 

Our results are shown in Fig. S. 'Ihe radius of the circular fault 

was 4.S6x and we took aAt/Ax = .5. lhe slip at a point inside 

the crack was stopped when the slip velocity at the point tended to re-

verse sign. We show results for various radial distances along the crack. 

Note that we plot total slip so that the results of equation (8) need to 

be doubled. lhe normalization factor for the slip i.s aT/~, where a is the fault 

radius, Te is the dynamic stress-drop, ~ is the rigidity. The points where 

the P stopping phases from the nearest and farthest edge of the fault arrive 

at a given point is shown by crosses and open circles, respectively. The 

point at which the fault healed is indicaeed by closed circles. Comparison 

with Fig. 2 of Madariaga (1976) shows that in general our results compare well 

with his. It is found that the fault generally s tarts healing about th.,' time 

when the P-stopping phase from the farthest edge arrives. Madariaga 

fou'",d that every point of the fault healed almost simultaneously. 

lhe final slip aHer the fault has healed was found by Madariaga to be 
T a e u

1 
= --~- (1.52) at th~ centre of the crack. The static solution for this 

12 aT / 
case is u

1 
= -. ___ e 1- r 2/a2 where r = distance from the centre of 7rr ~ , 

the fault. Madariaga's solution thus overshoots the static solution at 
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the centre by a factor of 1.34. We find that our final slip at the centre 

is virtually the same as Hadariaga IS. 
r The slip at points - = .22 (not a 

plotted) , r -- = .44, a 
r - = a 

r .66 and a = .88 overshoot the static 

solution at these points by factors of ;1.. 31, 1. 25, 1. 2 and 1. 0, respec­

tively, in our case. Hadariaga found that the slip at the points rIa = .2, 

.4, .6 and .8 overshoots the static solution at these points by factors of 

1.25, L 18. 1. 22 and 1. 21, approximately. This implies that the centra of 

the fault overshoots the static solution more than the edges and that the 

final static stress drop is not a constant O'ler the whole fault but is greater 

at the centre of the fault than near the edges. This non-uniform stress drop 

is a consequence of our healing specification. " 

We also point out here that for a circular crack there is an azimuthal 

symmetry in displacement, stress, and velocity fields. We have.!!£J:. assumed 

such a symmetry but have calculated the fields in one whole quadrant of 

the circular fault. The results have the required azimuthal symmetry. 

That is, in every direction from the centre of the fault the displacements 

and stre~ses are the same within 15% (in the worst case). 

" , 
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7. Circular crack which grows at speed a/2 

We next study the case of a circular crack that starts from a radius 

of 1.SAx and grows at half the P-wave speed. In Fig. 6 we show numerical 

results for two cases: one for a self-similar circular crack that never 

stops and the other for a circular crack that stops when it reaches a 

radius of 6.SAx. The latter solution is shown by dotted lines, where it 

diverges from t.he former solution. 



18 

a. Self-similar crac:. 

The half-slip. plotted at various radial distances along the fault. 
4x T e is normalized by the factor ( 3~)' The analytical solution fer the 

half-slip for a circular self-similar shear crack which initiates at a 

point and grows at a speed of a/2 can be determi~~d from Kostrov (1964) 

or Dahlen (1974) to be u1 = .69 It 2-4r 2 • using the same normalization 

factor as we have used, where r is thp. radius at time t. 

The analytical solution is shown on the figure as continuous lines. 

For the case when the crack stops, the arrival of the P-stopping phase 

from the nearest crack edge is indicated. The slip is stopped when the 

slip velocity tends to reverse sign. Our numerical solution compares 

well with the analytic solution. The solution for the points closer to 

the centre are initially larger than the analytic solution but cr.;".verge 

to the analytic solution at later times. For points farther away trom 

the centre, this effect is not seen. This is due to the fact that in 

the analytic solution the rupture initiated at. a pctint, whereas i:l our 

problem the initial rupture area is finite. Tti~ displacement at a point 

immediately after it breaks shows the sharp rise as is expected from the 

analytic solution. This is in contrast to the results of Madariaga (1976) 

who uses numerical damping to smooth the stresses and velocities at the 

crack tip and thereby loses the detailed behaviour at the crack-tip. 

We plot in Fig. 7 the slip velocities determined by numerical differ-

entiation using the 
• u1 (t+llt)-u 1 (t-llt) 

relation u1(t) = 211t at various radial 

distances and azimuths from the centre of the fault. The numerical dif-

ferentiation introduces high-frequency noise into our results. The numer-

ica1 solution oscillates about the analytic solution and does not diverge 

significantly from it. This is a very important property of our result 
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since pulse shapes due to a rupture depend on the sl~r velocities on the 

rupt.ure surface. In fact, since the determination of pulse-shapes in-

volves integration of these slip-velocities over the fault surface, these 

oscillations will be drastically reduced and will not affect the pulse-

shapes. 

Fig. 7 also shows that our results have azimuthal symmetry about the 

origin, even though such a symmetry was not assumed. In our problem, 

we took the xl-direction to be along the dil.'ection of the initially applied 

shear stress. For a self-similar crack, this means that the component of 

displacement u
2 

and the component T
23 

of the shear stress on the crack 

surface are both zero. We calculate both these quantit:Les to check if 

they are zero. We fj~d that u
2 

and T 23 are both very small. The reason 

for u2 and '23 not being exactly zero is numel.'ical noise due to 

the discrete nature of the problem. In fact, u2 and T
23 

may be taken as 

a rough measure of the numerical noise in the ul and T
13 

r.omponents, 

respectiv"ly. 

We find that u2 is never larger than 8% of u1 and does not increl'se 

with time. T
23 

is found to be always less than 20% of the dynamic stress 

drop. Both u and T show azimuthal synnnetry about the centre of the z 23 

crack. 

Thus we find that even though our grid-spacing is fairly rough, so that 

we have only a crude approximation to a circular crack which extends discontinu-

oU91y and we have sligntly different initial conditions than that neces-

sary for a self-similar crack, our results compare well with the analytic 

solution. The only restriction is that we are limited in the upper limit 

of frequencies of radiation we can study with thfs technique. 

, 
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b. Finite crack 

The results for a circu1alr crack that starts from a radius of 1.51lx , 

grows at 0/2 and is stopped when it reaches a final radius of 6.5Ax is 

shown iT· Fig. 6 by dotted lines where it deviates from the self-similar 

solution. The normalization factor for the half-slip is (aTe/3~). The 

final offset at any point on the crack is given by 

u
J 

= (1.23) g 
7" 

so that the dynamic solution overshoots the static solution by 23%. For 

the same problem using different numerical techniqu~s, ~mdariaga (1976) 

found an overshoot of 20% and Ar.chu1eta (1976) an overshoot of 27%. 

.' 
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Conclusions 

We have developed a numerical scheme based on a boundary-integral 

equation technique to determine the slip on the fault surface for a 

three-dimensional shear crack of any arbitrary shape. We have shown 

by comparison with available solutions for simple case~ that the tech-

nique works correctly. The advantage of this method is that it can in-

corporate a fracture criterion so as to enable the study of spontaneous 

crack pr.Clpagation. Further, it can be used to study the c/.~e when there 

is variable strength, variable initial stress, and variable friction on 

the crack surface. Study of these cases is'now underway. The computing 

time for fifty time-steps for aat/ux = .5 was 15 minutes of CPU time on 

an IBH 360/75 or IBM 360/91. The method can also be applied to study the 

propagation of tension cracks by using the appropriate components of Green's 

functions, which are available from Richards (1979). 

.l 

,) 
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Figure Captions 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure S. 

Schematic representation of fault geometry. xI is the direc­

tion of inj.tial applied stress and x3 .. 0 is the fault plane. 

Region of integration in (Xl' X2, t) space. Shaded region 

in lower figure is the cone S defined in equation (3). In 

the upper figure, the cone S is projected on the x
2 

n 0 plane 

for clarity. 

Figure showing time-dependence of I , I , 
t ~ 

the case a 2 = 362. The dotted lines are the values of the func-

tion increased ten-fold to show detailed behaviour at low am-

plitudes. P, Sand R are the arrival times of the compression-

al, shear and Rayleigh waves. Values are plotted as heavy 

lines only between amplitudes ±l for II and I2 
at I aI 2 ± 10 for ~,~. In fact, II is singular at 

aI 
at P and R and ~ is s1.ngular at Sand R. 

and amplitudes 
aIL 

R, ~ is singular 

Three-dimensional plot of ~he discretized Green's function 

component FI1(x1, x2' t) at t = l7.S6x la. 1 and 2 are the direc-

tions xl and x2• 0 is the point of application of impUlse. P, 

Sand R indicate the compressional, shear and Rayleigh waves. 

Normal.bed slip function for an instantaneously appearing cir-

cular fault. at The normalization factor for the time is a- and 

for the slip is ~, where ~e is the stress drop, ~ is the rigid­
a~e 

ity, and a is the fault radius. The slip is shown at several 

radial distances from the origin. The P-wave speed was taken 

as unity. The static solution at the centre of the "'<lck is 

at the level 1.1. The crosses and open circles indicate arrival 

of the P-stopping phase from the nearest and farthest edges of 

the fault. The solid circles indicate the time when the point healed. 



Figure 6. 

Figurr 7. 

26 

Normalized half-slip for a circular self-similar shear crack 

which grows at speed 'l/2. The co,..tinuous lines are the analy­

tic solution due to Kostrov (1964). The step-like solid lines 

give the numerical solution. The step-like -Jotted lines are 

the solution for the case whan tho crack stops suddenly after 

roaching a radius of 6.S6x 

Normalized slip velocities for a circular self-similar shear 

crack which grows at a speed of a/2. The coptinuous lines are 

the analytic solution given by ~l = .69t! .'t2-4r2. The numer­

ical solutions are shown by crosses and solid circles. 
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